
A Hierarchical Fair Service Curve Algorithm for

Link-Sharing, Real-Time and Priority Services

Ion Stoica Hui Zhang T. S. Eugene Ng

September 1997

CMU-CS-97-154

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213
©os miJM¥ mssmam u

An earlier version of this paper appeared in Proceedings of ACM SIGCOMM:97.

19971230 124
This research was sponsored by Defense Advance Research Projects Agency (DARPA) under contract

numbers N66001-96-C-8528 and N00174-96-K-0002, and by a National Science Foundation (NSF) Career

Award under grant number NCR-9624979. Additional support was provided by Intel Corp., MCI, and Sun

Microsystems.
Views and conclusions contained in this document are those of the authors and should no be interpreted

as representing the official policies, either expressed or implied, of DARPA, NSF, Intel, MCI, Sun, or the

U.S. government.

3T££! -J gJSW JS.-SCW»g *«ai

ÄdlssttSESi ■■ yvsP

Keywords: Resource management, scheduling, link-sharing, real-time, fairness.

Abstract

In this paper, we study hierarchical resource management models and algorithms that sup-

port both link-sharing and guaranteed real-time services with decoupled delay (priority)

and bandwidth allocation. We extend the service curve based QoS model, which defines

both delay and bandwidth requirements of a class, to include fairness, which is important

for the integration of real-time and hierarchical link-sharing services. The resulting Fair

Service Curve link-sharing model formalizes the goals of link-sharing and real-time services

and exposes the fundamental tradeoffs between these goals. In particular, with decoupled

delay and bandwidth allocation, it is impossible to simultaneously provide guaranteed real-

time service and achieve perfect link-sharing. We propose a novel scheduling algorithm

called Hierarchical Fair Service Curve (H-FSC) that approximates the model closely and

efficiently. The algorithm always guarantees the performance for leaf classes, thus ensures

real-time services, while minimizing the discrepancy between the actual services provided

to the interior classes and the services defined by the Fair Service Curve link-sharing model.

We have implemented the H-FSC scheduler in the NetBSD environment. By performing

simulation and measurement experiments, we evaluate the link-sharing and real-time per-

formances of H-FSC, and determine the computation overhead.

1 Introduction

The emerging integrated services networks will support applications with diverse perfor-

mance objectives and traffic characteristics. While most of the previous research on in-

tegrated services networks has focused on guaranteeing QoS, especially real-time require-

ments, for each individual session, several recent work [1, 6, 12] has argued that it is also

important to support hierarchical link-sharing service.

With hierarchical link-sharing, there is a class hierarchy associated with each link that

specifies the resource allocation policy for the link. A class represents some aggregate of

traffic streams that are grouped according to administrative affiliation, protocol, traffic

type, or other criteria. Figure 1 shows an example class hierarchy for a 45 Mbps link that

is shared by two organizations, CMU and University of Pittsburgh (U. Pitt). Below each

of the two organization classes, there are classes grouped based on traffic types. Each class

is associated with a bandwidth, which is the minimum amount of service this class's traffic

should receive when there are enough demands.

There are several important goals for hierarchical link-sharing service. First, each class

should receive certain minimum bandwidth if there are enough demands. In the example,

CMU's traffic should receive at least 25 Mbps bandwidth during a period when the aggre-

gate traffic from CMU has a higher arrival rate. Similarly, if there are resource contentions

between traffic classes within CMU, the video traffic should get at least 10 Mbps. In the

case when there are only audio and video streams from CMU, the audio and video traffic

should receive all the bandwidth that is allocated to CMU (25 Mbps) if the demand is

high enough. That is, if certain traffic classes from CMU do not have enough traffic to

fully utilize its minimum guaranteed bandwidth, other traffic classes from CMU will have

a higher priority to use this excess bandwidth than traffic from U. Pitt. While the above

policy specifies that CMU audio and video traffic classes should use the excess bandwidth

unused by the data traffic, there is still the issue of how the excess bandwidth is distributed

between the audio and video traffic classes. A second goal of hierarchical link-sharing ser-

vice is then to have a proper policy to distribute the excess bandwidth unused by a class

to its sibling classes.

In addition to the two goals mentioned above, it is also important to support real-time

10 Mbps

2Mbps

Distinguished
Lecture

Distinguished
Lecture

Figure 1: An Example Link-Sharing Hierarchy.

and priority services within the framework of hierarchical link-sharing. Since real-time

service guarantees QoS on a per session basis, a natural way to integrate real-time and

hierarchical link-sharing services is to have a separate leaf class for each real-time session.

In the example, the CMU Distinguished Lecture video and audio classes are two leaf classes

that correspond to real-time sessions. Finally, we would like to support priority service in

the sense that delay (both average delay and delay bound) and bandwidth allocations are

decoupled. For example, even though the CMU Distinguished Lecture video and audio

classes have different bandwidth requirements, it is desirable to provide the same low

delay bound for both classes. Such a decoupling of bandwidth and delay allocation is

also desirable for interior or leaf classes that correspond to traffic aggregates. For example,

one may want to provide a lower average delay for packets in CMU's audio traffic class

than those in CMU's data traffic class.

A number of algorithms have been proposed to support hierarchical link-sharing, real-

time, and priority services. However, as discussed in Section 7, they all suffer from im-

portant limitations. The fundamental problem is that with all three services, multiple

requirements need to be satisfied simultaneously. This is very difficult and sometimes im-

possible to achieve due to conflicting requirements. This problem is exacerbated by the

fact that there is no formal definition of hierarchical link-sharing service that specifies all

the requirements.

In this paper, we consider an ideal model that can precisely define all the important

performance goals of real-time, hierarchical link-sharing, and priority services. The basic

building block of the framework is the concept of service curve, which defines a general

QoS model taking into account both bandwidth and priority (delay) requirements. In this

architecture, each class in the hierarchy is associated with a service curve. An ideal Fair

Service Curve link-sharing model is to (a) simultaneously guarantee the service curves for

all nodes in the hierarchy, and (b) distribute the excess bandwidth unused by a class to its

sibling classes fairly. Since the service curves for class nodes are guaranteed simultaneously,

the QoS for both individual sessions (leaf nodes in the hierarchy) and traffic aggregates

(interior and possibly leaf nodes in the hierarchy) are satisfied. In addition, delay and

bandwidth allocation can be decoupled by choosing different shapes of service curves.

Therefore, the fair service curve link-sharing model gives a precise definition of the link-

sharing service that simultaneously satisfies all the important goals of real-time and link-

sharing services.

Unfortunately, as will be shown in the paper, the ideal model cannot be realized at all

times. In spite of this, the model serves two important purposes. First, unlike previous

models, the new model explicitly defines the situations when all performance goals cannot

be simultaneously satisfied, thus exposing the fundamental tradeoffs among conflicting

performance goals. Second, the model serves as an ideal target that a scheduling algorithm

should approximate as closely as possible.

With the ideal service model defined and the fundamental tradeoffs exposed, we propose

an algorithm called Hierarchical Fair Service Curve (H-FSC) that achieves the following

three goals:

• guarantee the service curves of all leaf class nodes,

• minimize the short-period discrepancy between the total amount of services provided

to interior node class and its service curve,

• allocate the excess bandwidth to sibling classes, with bounded fairness

Notice that we made the architecture level decision that whenever there is a conflict, the

performance guarantees of the leaf class nodes take priority. We believe this is the right

tradeoff as the performance of leaf classes are most related to the performance of individual

applications. In particular, since a session is always a leaf class, guaranteed real-time

services can be provided on a per session basis with this framework.

The rest of the paper is organized as follows. Section 2 presents the Fair Service Curve

link-sharing model and discusses the fundamental tradeoffs in approximating this model.

Section 3 presents our solution, the Hierarchical Fair Service Curve (H-FSC) scheduler,

followed by a discussion on its implementation complexity in Section 4. We analyze the

delay and fairness properties of H-FSC in Section 5, and evaluate its performance based

on both simulation and measurement experiments in Section 6. We discuss related work in

Section 7 before concluding the paper in Section 8.

2 Fair Service Curve Link-Sharing Model

In this section, we first define the service curve QoS model and motivate the advantage

of using non-linear service curves to decouple delay and bandwidth allocation. We then

extend the concept of fairness to service curve based schedulers. Finally, we present the

ideal Fair Service Curve link-sharing model and discuss the fundamental tradeoffs involved

in designing a scheduler that approximates the model.

2.1 Service Curve Based QoS Model

As discussed in Section 1, we will use the service curve abstraction proposed by Cruz [4, 5]

as the building block to define the idealized link-sharing model.

A session i is said to be guaranteed a service curve Si(-), if for any time t2, there exists a

time ti < t2, which is the beginning one of session Vs backlogged periods (not necessarily

including t2), such that the following holds

Sr(t2-h) <Wi{tUt2), (1)

where wi(t1,t2) is the amount of service received by session i during the time interval (i1? t2].

For packet systems, we restrict t2 to be packet departure times.

In the case in which the server service curve is not concave, one algorithm that supports

service curve guarantees is Service Curve Earliest Deadline first (SCED) [11]. With SCED,

a deadline is computed for each packet using a per session deadline curve A(-) and packets

are transmitted in increasing order of their deadlines. The deadline curve A(-) is computed

such that in an idealized fluid system, session Vs service curve will be guaranteed if by any

time t, at least D{(t) amount of service is provided to session i. Based on Eq. (1), it follows

that

Di{t) = mm(St(t - U) + Wiih)), (2)

where the minimization is over all the beginnings of session Vs backlogged periods t^s, and

Wi(ti) = Wi(0,ti) is the total amount of service session i receives till time ti. This gives

the following iterative algorithm to compute A(')- When session i becomes backlogged for

the first time, A(-) is initialized to its service curve -%(•). Subsequently, whenever session

i becomes backlogged again at time ta after an idling period, Di(-) is updated according to

the following:

Di(t) = min(Di(t), Sz(t - ta) + Wl{ta)), V t > Dr\Wi{ta)). (3)

The reason for which A(-) is defined only for t > D~l{ci) is because this is the only portion

that is used for subsequent deadline computation. Since A(-) may not be an injection, its

inverse function may not be uniquely defined. Here, we define D~1(y) to be the smallest

value x such that Di(x) = y. Based on A(-)> tne deadline for a packet of length L\ at the

head of session Vs queue can be computed as follows,

di = D71(wi(t) + L*) (4)

The guarantees specified by service curves are quite general. For example, the guarantees

provided by Virtual Clock and various Fair Queueing algorithms can be specified by linear

service curves with zero offsets.1. Since a linear service curve is characterized by only one

parameter, the slope or the guaranteed bandwidth for the session, the delay requirement

1ln theory, Fair Queueing and its corresponding fluid algorithm GPS can support more general service

curves than linear curves [10, 15]. However, in practice, such a resource assignment has a number of

limitations. See Section 7 for a detailed discussion.

cannot be specified separately. As a consequence, even though delay bounds can be provided

by algorithms guaranteeing linear service curves, there is a coupling between the guaranteed

delay bound and bandwidth, which results in inflexible resource allocation. With non-linear

service curves, both priority (delay) and bandwidth allocation are taken into account in an

integrated fashion, yet the allocation policies for these two resources are decoupled. This

will increase the resource management flexibility and the resource utilization inside the

network.

To illustrate the advantage of decoupling delay and bandwidth allocation with non-linear

service curves, consider the example in Figure 2, where a video and an FTP session share a

10 Mbps link served by a SCED scheduler. Let the video source sends 30 8KB frames per

second, which corresponds to a required bandwidth of 2 Mbps. The remaining 8 Mbps is

reserved by a continuously backlogged FTP session. For simplicity, let all packets be of size

8 KB. Thus, it takes roughly 6.5 ms to transmit a packet. Let both video and FTP sessions

be active at time 0. Then the sessions' deadline curves are also their service curves. First,

consider the case in Figure 2(a) where linear service curves are used to specify the sessions'

requirements. The arrival curve A,(-) represents the cumulative number of bits received by

session i. The deadline of a packet of session i arriving at time u is computed as the time t

such that S(t) equals A(u). As can be seen, the deadlines of the video packets occur every

33 ms, while the deadlines of the FTP packets occur every 8.2 ms. This results in a delay of

approximately 26 ms for a video packet. In the second scenario as illustrated in Figure 2(b),

we use two-piece linear service curves for characterizing the sessions' requirements. The

slope of the first segment of the video session's service curve is 6.6 Mbps, while the slope

of the second segment is 2 Mbps. The inflection point occurs at 10 ms. The FTP session's

service curve is chosen such that the entire remaining capacity is used. As can be seen,

the delay of any video packet is no more than 10 ms in this case. It is important to note

that the reduction in the delays for video packets does not come for free: as a result, the

delays for FTP packets increase. However, this is acceptable since throughput rather than

per packet delay is more important to the FTP session.

While in theory any non-decreasing functions can be used as service curves, in practice

only linear or piecewise linear functions are used for reasons of simplicity. In general, a

concave service curve will result in a lower average and worst case delay for a session than

6

a linear or convex service curve with the same guaranteed assymptotic rate. However, it

is impossible to have concave service curves for all sessions and still reach high average

utilization. Intuitively, this is easy to understand as priority is relative and it is impossible

to give all sessions high priority (low delay). Formally, the SCED algorithm can guarantee

all the service curves if and only if £, Si(t) < S(t) holds for any t > 0 where S(t) is the

amount of service the server provides during a time period of t. That is, the sum of the

service curves over all sessions should be no more than the server's service curve.

2.2 Service Curve and Fairness

While the service curve is very general in specifying the minimum amount of service (both

bandwidth and priority) guaranteed to a session or a class, it does not specify how the excess

service, which is the extra capacity of the server beyond that is needed to guarantee the

service curves of all active sessions, should be distributed. It is possible to have different

scheduling algorithms that provide the same service curve guarantees but use different

policies for distributing excess service. For example, while Virtual Clock and Weighted

Fair Queueing (WFQ) can provide identical linear service curve guarantees, they have

different fairness properties. In particular, with Virtual Clock, it is possible that a session

does not receive service for an arbitrary long period because it receives excess service in a

previous time period. On the contrary, the maximum period that an active session does

not receive service in a WFQ server is bounded.

While the fairness property has been extensively studied for scheduling algorithms that

only use sessions' rates as parameters and there are several formal definitions of fairness

properties, such as the relative fairness given by Golestani [8] and the worst-case fairness

given by Bennett and Zhang [2], it is unclear what fairness means and why it is important

in the context of scheduling algorithms that decouple the delay and bandwidth allocation.

In this section, we discuss the semantics of fairness and argue that it is important to have

the fairness property even for scheduling algorithms that provides performance guarantees

by decoupling the delay and bandwidth allocation. We then give a simple example to

illustrate that SCED is an unfair algorithm, but can be extended to be fair.

There are two aspects of the fairness property that are of interest: (1) what is the policy

of distributing excess service to each of the currently active sessions? (2) whether and to

what extent a session receiving excess service in a previous time period will be penalized

later?

For rate-proportional scheduling algorithms, a perfectly fair algorithm will distribute the

excess service to all backlogged sessions proportional to their minimum guaranteed rates.

In addition, it will not punish any session for receiving excess service in a previous time

period. Generalized Processor Sharing (GPS) is such an idealized fair algorithm.

For scheduling algorithms based on general service curves, a fair algorithm should (a)

distribute excess service according to a well defined policy, and (b) not penalize a session

that uses excess service. Though these two aspects of the fairness property are usually

considered together in a formal fairness definition, they are actually orthogonal issues.

While different policies can be used to distribute excess service, in this paper we simply

distribute excess service according to the service curves. It is the second aspect of the

fairness property, i.e., a session that receives excess service in a previous time period should

not be penalized, that we would like to emphasize in this paper.

There are two reasons why it is important to have such a fair scheduler. First, even in

a network that supports guarantees, it is still desirable to let end systems to statistically

share the fraction of resources that are either not reserved and/or not currently being used.

A network service should encourage a source to opportunistically send more traffic than

the minimum guaranteed amount, provided that the guarantees for all other sessions are

not affected by the extra traffic. That is, a network should not penalize a session that

uses more service than guaranteed if the additional service it uses is the excess service

allotted by the server. Fairness is also important when we want to construct a hierarchical

scheduler to support hierarchical link-sharing. In [1], it has been shown that the accuracy

of link-sharing and delay bounds provided by Hierarchical Packet Fair Queueing (H-PFQ)

is closely tied to the fairness property of PFQ server nodes used to construct the H-PFQ

scheduler.

While the SCED algorithm can guarantee all the service curves simultaneously, as long

as the server service curve is not concave, it does not have the fairness property. Consider

the example shown in Figure 3(a). Session 1 and 2 have two-piece linear service curves

Si(-) and S2(-)i respectively, where

Si(t)

and

S2(t) = {

at, if t < T
(5)

ßt, if t > T

ßt, if t < T
" (6)

erf, if t > T

In addition, let the server rate be one, and assume the followings hold: a < ß, i.e., S'i(-)

is convex and S^-) is concave, a + /? < 1, i.e., both service curves can be guaranteed by

using SCED, and 2ß > 1, i.e., it is not possible to guarantee the peak rates of both sessions

simultaneously.

Also, for simplicity, assume that the packets are of unit length, and once a session

becomes active it remains continuously backlogged. Under these assumptions, the deadline

of the k-th. packet of session i under SCED is simply Sf1(k) + fs, where t\ is the time when

session i becomes active. Similarly, the deadline of the last packet of session i that has

been transmitted by time t (t > t\) is S~1(wi(tls,t)) + t\. Note that since session i is not

active until tls, we have Wj(t) = Wi(0,t\) + Wi(¥s,t) = Wi(tls,t).

Now consider the scenario in which session 1 becomes active at time 0 and session 2

becomes active at time t0. Since session 1 is the only session active during the time interval

[0, to], it receives all the service provided by the server, i.e., u>i(t) = t, for any 0 < t < t0 (see

Figure 3(b)). Also, the deadline of the last packet of session 1 that has been transmitted

by time t0 is S^^i^o)) = ^(to).

Next, consider at time to, when the second session becomes active (see Figure 3(c)).

Since the deadline of the A;-th packet of session 2 is S^ik) + t0 and packets are served in

increasing order of their deadlines, it follows that as long as S'^1(A;) -\-to < Si1(t0), only the

packets of session 2 are transmitted. Thus, session 1 does not receive any service during

the time interval (i0, ^], where t\ is the smallest time such that S21{w2(ti)) + to > S^fto).

As shown in Figure 3(c), for any time t, Wi(t) > S\(t) and w2(t) > S2(t — t0) hold,

i.e., the SCED algorithm guarantees the service curves of both sessions. However, SCED

punishes session 2 for receiving excess service during [0, to] by keeping it from receiving

service during (t0, ii]. This behavior makes it difficult to use SCED in a hierarchical server.

To see why, consider a simple two-level hierarchy where the bandwidth is shared by two

classes, characterized by the service curves S\(-), and S2(-), respectively. Then, if one of

9

class l's child classes becomes active at some point between t0 and ti, it will not receive

any service before £1? no matter how "important" this session is!

It is interesting to note that in a system where all the service curves are simple lines,

SCED reduces to the well-known Virtual Clock discipline. While Virtual Clock is unfair [10,

16], there exists algorithms (such as the various PFQ algorithms) that not only provide

the same service curve guarantees as Virtual Clock but also achieve fairness. In PFQ

algorithms, each session is associated with a virtual time function that represents the

normalized amount of service that has been received by the session. The algorithm then

achieves fairness by minimizing the differences among the virtual time functions of all

sessions. Since Virtual Clock is a special case of SCED, it is natural to use the same idea

for achieving fairness in SCED with general service curves. This is achieved by associating

with each session a generalized virtual time function, and servicing the session that has the

smallest virtual time function. While we will describe the detailed algorithm in Section 3,

we use the example in Figure 3(d) to illustrate the concept. The main modification to

SCED would be to use S2{t — d0) in computing the packets' deadlines for session 2, instead

of S2(t — t0). It can be easily verified that if Si(t) = rit and S2(t) = r2t, where rx and

r2 are the rates assigned to sessions 1 and 2 respectively, the above algorithm results in

identical behaviors as in WFQ. Figure 3(d) shows the allocation of the service time when

this discipline is used. Note that, unlike the previous case, session 1 is no longer penalized

when session 2 becomes active.

In summary, fairness can be incorporated into service curve based schedulers such that

(a) the excess service is distributed according to the service curves of active sessions, and (b)

a session using excess service will not be penalized later. Unfortunately, this does not come

for free. As shown in Figure 3(d) the service curve of session 2 is violated immediately

after time t0. This underlines the difficulty of simultaneously achieving fairness, while

guaranteeing the service curves. In fact, as we will see in the next section, in general this

is not possible.

2.3 Fair Service Curve Link-Sharing Model

As discussed at the beginning of the paper, the important goals of hierarchical link-sharing

are: guaranteed QoS for each class, priority or decoupled delay and bandwidth allocation

10

among classes, and proper distribution of excess bandwidth.

Since the service curve abstraction provides a general definition of QoS with decoupled

delay and bandwidth allocation, and can be extended to include fairness property for

the purpose of excess bandwidth distribution, it is natural to use service curves to define

the performance goals of link-sharing and real-time services. In a Fair Service Curve link-

sharing mode there is a service curve associated with each node in the link-sharing hierarchy.

The goal is then to (1) satisfy the service curves of all nodes simultaneously, and (2)

distribute the excess service fairly as defined in Section 2.2. Note that (1) is a general

requirement that subsumes both link-sharing and real-time performance goals. A real-

time session is just a leaf node in the hierarchy, and its performance will be automatically

guaranteed if the Fair Service Curve link-sharing model is realized.

Unfortunately, with non-linear service curves, there are time periods when either (a) it

is not possible to guarantee the service curve for all classes, or (b) it is not possible to

simultaneously satisfy both the service curves and fairness property.

To see why (a) is true, consider the hierarchy in Figure 4(a). For simplicity, assume the

service curve assigned to an interior class is the sum of the service curves of all its children.

z\lso, assume all sessions are continuously backlogged from time 0 except session 1, which

is idle during [0,t] and becomes backlogged at time t. During [0,2], since session 1 is not

active, its entire service is distributed to session 2 according to the link-sharing semantics.

At time t, session 1 becomes active. In order to satisfy session l's service curve, at least

Si(At) service need to be allocated for session 1 for any future time interval (t,t + At].

However, as shown in Figure 4(b), since the sum of all the service curves that need to

be satisfied during (t,t + At] is greater than the server's service curve, it is impossible to

satisfy all the service curves simultaneously during this period. Since decoupling delay and

bandwidth allocation is equivalent to specifying a non-linear service curve, this translates

into a fundamental conflict between link-sharing and real-time service when the delay and

bandwidth allocation is decoupled.

To see the fundamental conflict between fairness and real-time requirements with decou-

pled delay and bandwidth allocation, consider the example in Figure 3 again. As shown in

Figure 3(d), if fairness is to be provided, the service curve of session 2 will be violated, i.e.,

w2(t) < S2{t — to), for some t > t0. This is because after t0 both sessions receive service at a

11

rate proportional to their slope, and since immediately after time t0 their slopes are equal,

each of them is served at a rate of 1/2, which is smaller than ß, the service rate required to

satisfy S2(-). Finally, it is worth to note that when all service curves degenerate to lines,

this algorithm reduces to WFQ.

Therefore, there are time periods when the Fair Service Curve link-sharing model cannot

be realized. In spite of this, the model serves two purposes. First, unlike previous models,

this model explicitly defines the situations when all performance goals cannot be simul-

taneously satisfied. This exposes the fundamental architecture tradeoff decisions one has

to make with respect to the relative importance among the conflicting performance goals.

Second, the model serves an ideal target that a scheduling algorithm should approximate

as closely as possible. We believe that a scheduler should guarantee the service curves of

the leaf classes all the time while trying to minimize the discrepancy between the service

allocated to each interior class and its fair service according to the model.

3 Hierarchical Fair Service Curve (H-FSC)

In this section, we propose a new scheduling algorithm called Hierarchical Fair Service

Curve (H-FSC) that closely approximates the ideal Fair Service Curve link-sharing model

as defined in the previous section.

3.1 Overview of the Algorithm

The scheduling is based on two criteria: the real-time criteria that ensures the service

guarantee of all leaf classes, and the link-sharing criteria that aims to satisfy service curves

of interior classes and fairly distribute the excess bandwidth. The real-time criteria is

used to select the packet only if there is a potential danger that the service guarantees

for leaf nodes are violated. Otherwise, the link-sharing criteria is used. Such a policy

ensures the real-time guarantee of the leaf classes while at the same time minimizing the

discrepancy between the actual services received by interior nodes and those defined by the

ideal link-sharing model.

With H-FSC, each leaf class i maintains a triplet (e,-, <£,?;;), while each interior class j

maintains only vh where e,- and d{ represents the eligibility time and the deadline associated

12

with the first packet of class i's queue, and Vi and Vj are virtual times for the classes. The

deadlines are assigned such that if the deadlines of all packets of a session are met, its

service curve is guaranteed. The eligibility times are used to arbitrate which one of the

two scheduling criteria to use for selecting the next packet. The packet at the head of

session i's queue is said to be eligible if e4 < t, where t is the current time. Eligibility

times are computed such that at any given time when there are eligible packets in the

system, there is a danger that the deadline of at least one packet is to be violated if the

link-sharing instead real-time criteria is used, i.e., there is a potential conflict between link-

sharing and real-time goals. Since the real-time goal is more important, whenever there

are eligible packets, the algorithm will always use the real-time criteria, which is to select,

among all eligible packets, the one with the smallest deadline. At any given time when

there are no eligible packets, i.e., there are no possible conflicts between link-sharing and

real-time goals, the algorithm will apply the link-sharing criteria recursively, starting from

the root class and stopping at a leaf class, selects, among all child classes, the one with

the smallest virtual time. While deadline and eligibility times are associated only with leaf

classes, virtual times are associated with both interior and leaf classes. The virtual time

of a class represents the normalized amount of service that has been received by the class.

In a perfect fair system, the virtual times for all sibling classes should be identical. The

objective of the link-sharing criteria is then to minimize the discrepancies between virtual

times for sibling classes. The pseudo code of H-FSC is given in Figure 5. In computing

eligibility time, deadline, and virtual time, the algorithm uses three curves, one for each

parameter: the eligible curve Ei(-), the deadline curve Di(-) , and the virtual curve K(-)-

The exact algorithms to update these curves are presented Section 3.2 and Section 3.3.

There are several noteworthy points about the algorithm. First, while H-FSC needs to

use two packet selection criteria to support link-sharing and real-time services, the other

hierarchical algorithm, Hierarchical Packet Fair Queueing (H-PFQ) [1], selects packet solely

based on the link-sharing criteria, and yet, it can support both link-sharing and real-time

services. This is because H-PFQ guarantees only linear service curves, and it is feasible

to guarantee all linear service curves simultaneously in a class hierarchy. In contrast, H-

FSC supports decoupled delay and bandwidth allocation by guaranteeing non-linear service

curves. As we have shown in Section 2, it is infeasible to guarantee all non-linear service

13

curves simultaneously in a class hierarchy. Consequently, H-FSC uses two separate criteria

for each of the link-sharing and real-time goals, and employs the mechanism of eligibility

time to determine which criteria to use. Second, the algorithm uses three types of time

parameters: deadlines, eligibility times, and virtual times. While leaf nodes maintain all

three parameters, the interior nodes maintain only the virtual time parameter. This is

because deadlines and eligibility times are used for the purpose of guaranteeing the service

curves, and H-FSC provides guarantees service curves only for leaf classes. On the other

hand, virtual times are used for the purpose of hierarchical link-sharing that involves the

entire hierarchy, and therefore are maintained by all classes in the hierarchy. A third point

to notice is that while all three parameters are time values, they are measured with respect

to different clocks. Deadlines and eligibility times are real times in the sense that they are

measured with respect to the physical real-time clock. The absolute values are important

as they need to be compared with the real-time clock. In contrast, the virtual time of a

class is measured with respect to the total amount of service provided by its parent class.2

The relative differences between virtual times of sibling classes are more important than

the absolute values of the virtual times. Finally, we note that in addition to the advantage

of decoupling delay and bandwidth allocation by supporting non-linear service curves, H-

FSC provides tighter delay bounds than H-PFQ even for class hierarchies with only linear

service curves. The key observation is that in H-PFQ, packet scheduling is solely based

on link-sharing criteria, which needs to go recursively from the root class to a leaf class

when selecting the next packet for transmission. The net effect is that the delay bound

provided to a leaf class increases with the depth of the leaf in the hierarchy [1]. In contrast,

with H-FSC, the delay bound of a leaf class is determined by the real-time packet selection

criteria, which considers only the leaf classes. Therefore, the delay bound is independent

of the class hierarchy.

3.2 Eligible Time and Deadline

In this section, we present the algorithm to compute the deadline and the eligible time for

each leaf class.

2For simplicity of notation, the parent of the root class is the server itself.

14

For each leaf class i, the algorithm maintains two curves, one for each parameter: the

eligible curve E(-) and the deadline curve D(-). In addition, it keeps a variable a, which is

incremented by the packet length each time a class i packet is selected using the real-time

criteria. Thus c; represents the total amount of service that the class has received when

selected under the real-time criteria. Like SCED, the deadline curve A(') is initialized to

its service curve S{(-), and updated each time session i becomes active at time ta according

to the following:

Di(t) = min(A(*), Si(t - ta) + c-), V t > D-1^). (7)

This is the same as Eq. (3) except that c,- is used instead of tu,-. Since c8- does not change

when the session receives service via the link-sharing criteria, the deadlines of future packets

will not be affected due to the fact that the session receives excess service from the link-

sharing hierarchy (see Figure 6). This is the essence of the "non-punishment" aspect of the

fairness property.

While deadlines are used to guarantee service curves for leaf classes, eligibility times are

used to arbitrate which one of the two scheduling criteria is to be applied to choose the next

packet for service. The key observation is that with non-linear service curves, sometimes

it is not possible to achieve perfect link-sharing and guarantee all service curves at the

same time. A typical situation is when a session i with a concave service curve becomes

active at ta, joining sessions that have convex service curves. Before session i joins, the

other sessions receive the excess service, but their deadline curves are not updated. When

session i becomes active, if the sum of the slopes of all active sessions' deadline curves at

time t is larger than the server rate, it is impossible to satisfy the service curves of all

sessions.

The only solution is to have the server allocate active sessions "enough" service in advance

using the real-time criteria such that the server has sufficient capacity to satisfy the service

curves of all sessions when new sessions become active. However, whenever a packet is

served using the real-time criteria but another packet has a smaller virtual time, there is a

departure from the ideal link-sharing distribution. Therefore, to minimize the discrepancy

from the ideal link-sharing model, we want to serve packets using the link-sharing criteria

whenever there is no danger that the guarantees for leaf classes will be violated in the

15

future.

In H-FSC, eligibility times are used to arbitrate which one of the two criteria is to be

applied to select the next packet. To give more insight on the concept of eligibility, let

E(t) be the minimum service that all active sessions should receive by time t, such that

irrespective of the arrival traffic, the aggregate service time required by all sessions during

any future time interval (t,t'] cannot exceed R x (£' - t), i.e., cannot exceed the server-

capacity, R. Note that this is a necessary condition: if the active sessions do not receive at

least E(t) service by time t, then there exists a scenario in which the service curve of at

least one session will be violated in the future. Intuitively, the worst case scenario occurs

when all sessions are continuously active after time t [?]. Because the above condition holds

for any future time t': we have

E(t) = £ A-(0 + [max(£(A(O-A(0) (8)

+ £ (A-(<')-A-(0)-Äx(*'-f))]+,
iev(t)

where D* represents the deadline curve of a passive session i that becomes active at time

t, and [x]+ denotes max(x,0). The above equation reads as follows. In the worst case,

when all passive sessions become active at time t, the maximum service requested by all

sessions during the time interval (t,t'] while all of them remain active is: E;e^(t)(A(i') -

Di{t)) + J2ieV(t)(D*(t') — D*(t)). Since all sessions can receive at most R x (f — t) service

during the interval (t,f], and since by time t the active sessions should have received at

least J2ieA(t) A(^) in order to satisfy their service curves, the above equation follows.

Thus, E(t) represents the minimum service that should be allocated to the active sessions

by time t using the real-time criteria in order to guarantee the service curves of all sessions

in the future. The remaining (excess) service can be allocated by the link-sharing criteria.

Further, it can be shown that the SCED algorithm is optimal in the sense that it can

guarantee the service curves of all sessions by allocating exactly E(t) service by time t.

With this a possible algorithm would be simply to allocate E(t) service by using SCED,

and redistributing the excess service according to the link-sharing criteria. The major

challenge in implementing such an algorithm is computing E{t) efficiently. Unfortunately,

this is difficult for several reasons. First, as shown in Eq. (8), E(t) depends not only on the

16

deadline curves of the active sessions, but also on the deadline curves of the passive ones.

Since according to Eq. (7), the deadline curve depends on the time when a session becomes

active, this means that we need to keep track of all these possible changes, which in the

worst case is proportional to the number of sessions. Second, even if all deadline curves are

two-piece linear, the resulting curve E(i) can be n piece-wise linear, which is difficult to

maintain and implement efficiently. Therefore, we choose to trade complexity for accuracy,

by overestimating E(t). The first step in the approximation is to note that (see Eq. (7)):

D*{t') - D*(t) < Si(t' - t), Vt'>t. (9)

By using this inequality and the fact that Y,i Stf) < Äxt, for any t, Eq. (8) becomes:

E(t) = E Dtf) + [max(£ (Dtf) - Dtf) + £ (D*(0 - A*(0) - Ä x (*' - t))] +

i€A(t) ieA(t) iev(t)

< J2 Dtt) + [max(E (Mf) - Di(t)) + E Stf -t)-Rx(t'- t))}+

ieA(t) *>f ieA(t) iev{t)

< £ Di(t) + [max(J2 (Di(f) - A(0) + E Stf -t)- E Stf - *))]+
ieA(t) t >< ieA(t) iev{t) ieA(t)uv(t)

= E A(<) + [max(Y, (A(0 - Di(t) - Stf - t)))}+

ieA(t) *>f ieA(t)

< E (A(<) + [max(A(^) - Dt(t) - Stf - t))}+).
ieA(t) >

Finally, we define the session's eligible curve to be

Etf = Dtf) + [max(A(0 - Dtf - Stf - *))]+, (10)
t'>t

Vt>D-l{Ci).

The eligible curve Etf determines the maximum amount of service received by session i at

time t by the real-time criteria. Since J2ieA(t) Etf > E{t), we have a sufficient condition.

Etf is updated every time session i becomes active by the function update_EC according

to the above formula. It is important to note that even though the formula, which applies to

algorithms with service curves of arbitrary shape, looks complicated, the eligibility curves

are actually quite simple to compute in the specific cases that we are interested in. For

example, for sessions with concave service curves the eligibility curve is the same as the

deadline curve. Intuitively this is easy to understand as the minimum service rate for

17

sessions with concave service curves will not increase in the future, thus there is no need

to provide future service for it. Similarly, for sessions with two piece-wise linear convex

service curve (first slope a, second slope ß, where ß > a), the eligibility curve is the linear

curve with the slope of ß.

3.3 Virtual Time

The concept of virtual time was first proposed in the context of Packet Fair Queueing (PFQ)

and Hierarchical Packet Fair Queueing (H-PFQ) algorithms to achieve fairness, real-time,

and hierarchical link-sharing. In H-FSC, we will use a generalized version of virtual time

to achieve hierarchical link-sharing.

Each Fair Queueing algorithm maintains a system virtual time vs(-). In addition it asso-

ciates to each session i a virtual start time s,(-), and a virtual finish time /,-(•). Intuitively,

vs(t) represents the normalized fair amount of service time that each session should have

received by time t, st(t) represents the normalized amount of service time that session i has

received by time t, and /,-(i) represents the sum between Vi(t) and the normalized service

that session i should receive for serving the packet at the head of its queue. Since Si(t)

keeps track of the service received by session i by time t, S{(t) is also called the virtual

time of session i, and alternatively denoted Vi(t). The goal of all PFQ algorithms is then to

minimize the discrepancies among vl(t)
,s and v(t). In a H-PFQ system, each class keeps a

virtual time function and the goal is to minimize the discrepancies among all sibling nodes

in the hierarchy. Various PFQ algorithms differ in two aspects, the computation of the

system virtual time function, and the packet selection policy. Examples of system virtual

time functions are the start time of the packet being currently served [9], the finish time

of the current packet being currently served [8], and minimum of the start times of all

packets at head of currently backlogged queues [1]. Examples of packet selection policies

are: Smallest Start time First (SSF) [9], Smallest Finish time First (SFF) [8], and Smallest

Eligible Finish time First [1, 14]. The choice of different system virtual time functions and

packet selection policies will affect the real-time and fairness properties of the resulted PFQ

algorithm.

Similar to H-PFQ, for each class i in the hierarchy, H-FSC maintains a virtual time

function Vi(t) that represents the normalized amount of service time that class i has received

18

by time t. In H-FSC, virtual times are used by the link-sharing criteria to distribute service

along the hierarchies according to the classes' service curves. The link-sharing criteria is

used to select the next packet only when the real-time criteria is not used. Since the real-

time guarantees for leaf classes are ensured by the real-time packet selection criteria, the

effect on performance by having different system virtual time functions and packet selection

algorithms in the link-sharing criteria is less critical. In H-FSC we use the SSF policy and

the following system virtual time function: vf — {vi>min + vitrnax)/21 where vi>min and Vi,max

are the minimum and maximum virtual start times among all class i's currently active child

classes. By doing this, we ensure that the discrepancy between the virtual times of any two

active sibling sessions is bounded (see Section 5). It is interesting to note that by taking v?

to be either Uj)rm-„ or Vi^max results in a discrepancy proportional to the number of sessions.

In H-FSC, Vi(t) is iteratively computed by using the previous virtual time function and

the session's service curve. Virtual times are updated when a packet finishes service or a

class becomes active. The function update_v is shown in Figure 7. Notice that update_v

recursively updates the virtual time and the virtual time function by following child-parent

link in the hierarchy till it reaches the root or a parent class that is active before time t.

In the algorithm, we actually maintain a virtual curve Vi(-), the inverse function of u;(-),

instead of £>;(•). K(") is updated by using the updateJVC function every time a class

becomes active:

Vi(t) = min(V-(*),$(* - vs
p(t)) + Wi), V t > vr>,-), (n)

where Wi is the total amount of service received by class i by time t, and v*,^ is the system

virtual time for class i's parent class. Finally, it is worth noting that in the particular case

when Si(-) is a straight line with slope r,-, from Eq. (11) we have Vi(t) = Tit. Then, the

virtual time V{ is simply V~l(wi) = Wi/ri, which is exactly the virtual time of session i in

the PFQ algorithms.

4 Implementation Issues and Complexity

The functions receive_packet and get_packet described in Figure 5 are called each time

an event occurs in the real system, i.e., a packet arrives or departs. In our current imple-

19

mentation we maintain two requests per session, one characterized by the eligible time and

deadline, called real-time request, and the other characterized by the virtual time, called

link-sharing request. For maintaining the real-time requests we can use either an augmented

binary tree data structure as the one described in [13], or a calendar queue [3] for keeping

track of the eligible times in conjunction with a heap for maintaining the requests' dead-

lines. While the former method makes possible to perform insertion and deletion (of the

eligible request with the minimum deadline) in O(logn), where n is the number of active

sessions, the latter method is slightly faster in the average case. The link-sharing requests

are stored in a heap based on their virtual times.

Besides maintaining the request data structures, the algorithm has to compute the var-

ious curves, and update the eligible time, the deadline, and the virtual time. While it is

expensive to update general service curves, in practice this complexity can be significantly

reduced by considering only piece-wise linear curves.

In our model, each session i is characterized by three parameters: the largest unit of

work, denoted u^ax, for which the session requires delay guarantees, the guaranteed delay

d™ax, and the session's average rate r,-. As an example, if a session requires per packet delay

guarantees, then u^ax represents the maximum size of a packet. Similarly, a video or an

audio session can require per frame delay guarantees, by setting u^ax to the maximum size

of the frame. The session's requirements are mapped to a two-piece linear service curve,

which for computation efficiency is defined by the following three parameters: the slope

of the first segment m|, the slope of the second segment m], and the z-coordinate of the

intersection between the two segments xt. The mapping {u™ax ,d™ax, n) ->• (m},Xi,mf) for

both concave and convex curves is illustrated in Figure 8.

It can be easily verified from Eq. (7) that any deadline curve that is initialized to a service

curve of one of the two types discussed above remains a two-piece linear service curve after

each updating operation. It is worth noting that although all two-piece linear concave curve

exhibits this nice property, this is not true for all convex curves. In fact, it can be shown

that only the two-piece linear convex service curve which have their first segment parallel

with the ^-coordinate have this propriety (which is our case). Since the first segment of

a deadline curve does not necessarily intersect the origin, we need an extra parameter to

uniquely characterize a deadline curve. We take this parameter to be the y-coordinate of

20

the intersection between the two segments and denote it y,-. The pseudocode to update the

deadline curve of session i is presented in Figure 9. The only parameters that are modified

are the coordinates of the segments intersection X{ and y,-, the slopes of the two segments,

m.j and m?, remain unchanged. It is important to note that the deadline curve, as well as

the virtual and eligible curves, is updated only when the state of the session changes from

passive to active. As long as the session remains active, no curves need to be updated.

The update operation of the virtual curve is similar to the one for the deadline curve.

The only difference is that instead of using ct- and ta, we use the total service W{ and the

virtual time v*,^, respectively.

Although from Eq. (10) it appears that the computation of the eligible curve is quite

complex, in our case it turns out that it can be done very efficiently: if the deadline curve is

concave, then the eligible curve simply equals to the deadline curve; if the deadline curve is

two-piece linear convex, then the eligible curve reduces to a line that starts from the same

point with the first segment of the deadline curve, and has the same slope as its second

segment.

Thus, updating the deadline, eligible and virtual curves takes constant time. Computing

the eligible time, deadline and virtual time reduces to the computation of the inverse of

a two-piece linear function, which takes also constant time. Consequently, H-FSC takes

0(log n) per packet arrival or packet departures, which is similar to other packet scheduling

algorithms [1].

5 Delay and Fairness Properties of H-FSC

In this section, we present our main theoretical results on the delay and fairness properties

of H-FSC. The proofs can be found in the Appendix. For the rest of discussion, we consider

the arrival time of a packet to be the time when its last bit was received, and the departing

time to be the time when its last bit has been transmitted.

The following theorem shows that by computing the deadlines of each packet, based on

Di(-), as defined by Eq. (7), we can indeed guarantee the service curve Si(-) of session i.

Theorem 1 With H-FSC, the service curve of a session is guaranteed, if each of its packets

is transmitted before its deadline.

21

The next theorem gives tight delay bounds for H-FSC. In conjunction with the previous

theorem, this result shows that the service curves are guaranteed within the size of a packet

of maximum length.

Theorem 2 The H-FSC algorithm guarantees that the deadline of any packet is not missed

by more than rmax, where rmax represents the time to transmit a packet of maximum, length.

It should be noticed that, unlike H-PFQ, the delay bounds do not depend on the number

of levels in the hierarchy. This is simply because the computation of the deadlines are

based on the service curves of the leaf classes only, and packet selection using the real-time

criteria is independent of the hierarchy structure.

Next, Theorem 3 characterizes the fairness of our algorithm, by giving bounds on the

discrepancy in the service time distribution from the ideal link-sharing model.

Theorem 3 In H-FSC, the difference between the virtual times of any two sibling sessions

that are simultaneously active is bounded by a constant.

From the theorem, the following corollary immediately follows:

Corollary In H-FSC, for any two sibling classes i and j that are continuously backlogged

during a time interval (t1,t2\, the following holds,

I (vi(t2) - viih)) - (Vj(t2) - Vj(U)) \< B, (12)

where B is a positive constant.

In other words, the difference between the normalized service time that each session should

receive during the interval (tut2] is bounded. It can be easily shown that when the service

curves for classes i and j are linear, B reduces to the fairness metric defined by Golestani [8].

6 Performance Evaluation

We have implemented H-FSC in a simulator and in the kernel of NetBSD 1.2 on the Intel

i386 architecture. We use a calendar queue in conjunction with a heap to maintain the real-

time requests, and a heap at each interior class to maintain the link-sharing requests. The

22

two implementations use nearly identical code. The only difference is that in the NetBSD

implementation, we use the CPU clock cycle counter provided by the Intel Pentium Pro

processor as a fine grain real-time clock for all eligible time and deadline computations.

In NetBSD, besides the scheduler, we have also implemented a packet classifier that maps

IPv4 packets to appropriate classes in the hierarchy.

We evaluate the H-FSC algorithm using both simulation and measurement experiments.

The experiments are performed on a 200 MHz Intel Pentium Pro system with 256 KB

on-chip L2 cache, 32 MB of RAM, and a 3COM Etherlink III ISA Ethernet interface card.

We instrumented the kernel such that we can record a log of events (such as enqueue

and dequeue) with time-stamps (using the CPU clock cycle counter) in a system memory

buffer while the experiments are running, and later retrieve the contents of the log through

an ioctl system call for post-processing and analysis. In the rest of the section, we

present results to evaluate H-FSC's performance in three aspects: (1) H-FSC's ability to

provide real-time guarantees, (2) H-FSC's support for link-sharing, and (3) the computation

overhead of our implementation of the algorithm.

6.1 Real-time Guarantees

We use simulation to evaluate the delay properties of H-FSC because we can have better

control over traffic sources in the simulator. We compare H-FSC to H-WF2Q+, which, to

the best of our knowledge, achieves the tightest delay bounds among all hierarchical packet

fair queueing algorithms [1].

Consider the two-level class hierarchy shown in Figure 10. The value under each class

represents the bandwidth guaranteed to that class. In our experiment, the audio session

sends 160 byte packets every 20 ms, while the video session sends 8 KB packets every 33 ms.

All the other sessions send 4 KB packets and the FTP session is continously backlogged.

To demonstrate H-FSC's ability to ensure low delay for real-time connections, we tar-

get for a 5 ms delay for the audio session, and a 10 ms delay for the video session. To

achieve these objectives, we assign to the audio session the service curve Sa = {u™ax =

160 bytes, d™ax = 5 ms, ra = 64 Kbps), and to the video session the service curve Sv =

(u™ax = 8 KB,d™ax = 10 ms,r„ = 2 Mbps). Also, in order to pass the admission con-

trol test, we assign to the FTP session the service curve SFTP = (
U

FTP
= 4 KB,dpjx

P —

23

16.25 ms, rFTp = 5 Mbps). • The service curves of all the other sessions and classes are

linear.

Figure 11 shows the delay distribution for the audio and video sessions under H-WF2Q+ and

H-FSC. Clearly, H-FSC achieves much lower delays for both audio and video sessions. The

reduction in delay with H-FSC is especially significant for the audio session. This is a

direct consequence of H-FSC's ability to decouple delay and bandwidth allocation. The

periodic variation in the delay, especially under H-WF2Q+ , mirrors the periodic activity

of the ON-OFF source. H-WF2Q+ is more sensitive to these variations due to the coupling

between bandwidth and delay allocation. Intuitively, when the ON-OFF source becomes

active, the number of packets from competing sessions that an audio or video packet has

to wait before receiving service almost doubles and the delay increases accordingly.3 On

the other hand, H-FSC ignores the class hierarchy in satisfying the delay requirements.

Therefore, when the ON-OFF session becomes active, the number of additional packets

from competing sessions an audio or video packet has to wait before being transmitted

increases by less than 20 % because the bandwidth of the ON-OFF session accounts for

only 18 % of the total bandwidth.

6.2 Link-sharing

To evaluate H-FSC's support for link-sharing, we conduct the following experiment using

our NetBSD/i386 implementation as the platform.

We set up a class hierarchy similar to the one in Figure 10 except that there are only

4 sessions at each level. The sessions at level one all have bandwidth reservation of 1.5

Mbps, and the sessions at level two have bandwidth reservations of 80 Kbps, 480 Kbps,

1.44 Mbps and 2 Mbps respectively. The total aggregate bandwidth reservation is 10 Mbps

- Ethernet's theoretical maximum throughput. All sessions are continuously backlogged

except for the 2 Mbps session which is an ON-OFF source. The traffic load is generated by

a self-timed user-level program that sends UDP packets of size 512 bytes for each session

at the required rates. Figure 12 shows the bandwidth vs. time graph for four sessions at

3Because the bandwidth of the ON-OFF session accounts for 40 % of the total bandwidth of class A,

when the ON-OFF session becomes active, the number of packets of class A that have deadlines during a

time interval also increases by approximately 40 %.

24

level 2 in the hierarchy. To compute the bandwidth, a 37.5 ms averaging interval is used

for all sessions except that a 60 ms interval is used for the 80 Kbps session due to its low

packet rate. As can be seen, when the 2 Mbps ON-OFF session is idle, its bandwidth is

fairly distributed to the other three competing sessions, while when all sessions are active,

they all received their guaranteed rates.

6.3 Computation Overhead

There are generally three types of computation overhead involved in our implementation

of H-FSC: packet classification, enqueue, and dequeue.

We first measure the packet classification overhead in our NetBSD/i386 implementation.

To reduce the overhead of packet classification, a hashing-based algorithm is used. As a

result, under light load, only the first packet of a class incurs the cost of full classification.

Subsequent packets from this class are classified based on the class's hash values. While

the worst-case overhead in our implementation increases with the number of classes in the

hierarchy, the average time to classify a packet based on hashing is about 3 /is.

To measure the enqueue and dequeue overhead, we run the simulator in single user mode

on a 200 MHz Pentium Pro system with 256 KB L2 cache and 32 MB of memory running

the unchanged NetBSD 1.2 kernel. Since identical code is used in both the simulator and

the NetBSD kernel implementation, the results also reflect the overhead in the NetBSD

implement ation.

In all experiments presented in this section, we measure (1) the average enqueue time,

(2) the average dequeue time for packet selection by both the link-sharing and the real-time

criteria, and (3) the average per packet queueing overhead, which is the total overhead of

the algorithm divided by the number of packets forwarded. In each case, we compute the

averages over the time interval between the transmission of the 10,000-th and the 20,000-th

packet to remove the transient regimes from the beginning and the end of the simulation.

In the first experiment, we use one level hierarchies where the number of sessions varies

from 1 to 1000 in increments of 100. The link bandwidth is divided equally among all ses-

sions. The traffic of each session is modeled by a two state Markov process with an average

rate of 0.95 of its reserved rate. As shown in Figure 13(a), enqueue and dequeue times

increase little between as the number of sessions increase from 100 to 1000 sessions. This

25

is expected as H-FSC has a logarithmic time complexity. Based on the average per packet

queueing overhead, we can estimate the throughput of our implementation. For example,

with 1000 sessions, since the average per packet queueing overhead is approximately 9 [is,

adding the 3 /is steady-state packet classification overhead, we expect our implementation

to be able to forward over 83,000 packets per second.4

In the second experiment, we study the impact of the number of levels in the class

hierarchy on the overhead. We do this by keeping the number of sessions constant at 1000

while varying the number of levels. We consider three hierarchies: one-level, two-level with

10 internal classes, each having 100 child classes, and three-level with each internal class

having 10 child classes. As shown in Figure 13(b), the enqueue and dequeue times as well

as the average per packet queueing overhead increase linearly with the number of levels.

Again, this is expected since each additional level adds a fixed overhead for updating the

virtual times in the hierarchy which, in our case, dominates the variable overhead that is

logarithmic in the number of child classes at each level.

Finally, we consider the case when all sessions are continuously backlogged. The average

enqueue time in this case is very small (less than 0.3 fj,s) as a packet arriving at a non-empty

queue is just added at the end of the queue without invoking any other processing by the

algorithm. However, both types of dequeue times increase accordingly. This is because

whenever a packet arrives at an empty queue or a packet is dequeued, our algorithm moves

the real-time requests that have become eligible from the calendar queue into the heap.

Since in this experiments all sessions are backlogged, this cost is charged to the dequeue

operations only. Nevertheless, the average per packet queueing overhead changes little. For

the flat hierarchy with 1000 sessions, the average per packet overhead is 8.79 (is, while for

the three-level hierarchy it is 11.54 yus.

We note that all these results are obtained with relatively untuned code. We expect that

the overhead can be significantly reduced with proper optimizations.

4This figure does not take into account route lookup and other system related overheads.

26

7 Related Work

Class Based Queueing [6] and Hierarchical Packet Fair Queueing [1] are two algorithms

that try to support both hierarchical link-sharing and real-time services.

A CBQ server consists of a link-sharing scheduler and a general scheduler. The link-

sharing scheduler decides whether to regulate a class based on link-sharing rules and mark

packets of regulated classes as ineligible. The general scheduler services eligible packets

using a static priority policy.

The key difference between H-FSC and CBQ is that we adopt a formal approach in

designing H-FSC. By presenting a formal model that precisely defines all the important

goals of link-sharing, real-time, and priority services, we expose the fundamental tradeoffs

between conflicting performance goals. This enables us to design an algorithm, H-FSC, that

not only provides better and stronger real-time guarantees than CBQ, but also supports

more accurate link-sharing service than CBQ. In addition, H-FSC offers much stronger

protection among traffic classes than CBQ when priority is supported.

For real-time services, H-FSC provides per session delay bound that is decoupled from

the bandwidth requirement while CBQ provides one delay bound for all real-time sessions

sharing the link. In addition, the delay bound provided by CBQ accounts only for the

delay incurred by the general scheduler, but not the delay potentially incurred by the link-

sharing scheduler. Since a traffic stream that is smooth at the entrance to the network

may become burstier inside the network due to network load fluctuations, the link-sharing

scheduler for a router inside the network may regulate the stream. With certain regulators

such as those defined in [7, 17], this regulation delay does not increase the end-to-end delay

bound. However, the regulating algorithm implemented by the link-sharing scheduler in

CBQ is based on link-sharing rules and is quite different from the well understood regulators

defined in [7, 17]. In addition, in order for the end-to-end delay bound for a session not be

affected by the regulating delay, the parameters need to be consistent among all regulators

for the session in the network. In CBQ, the regulation process is affected by the link-sharing

structure and policy, which are independently set at each switch. Therefore, it is unclear

how end-to-end delay bound will be affected by the regulation of link-sharing schedulers.

For link-sharing service, by approximating the ideal and well-defined Fair Service Curve

27

link-sharing model, H-FSC can identify precisely and efficiently during run-time the in-

stances when there are conflicts between requirements of the leaf classes (real-time) and

interior node classes (link-sharing). Therefore, H-FSC can closely approximate the ideal

link-sharing service without negatively affecting the performance of real-time sessions. With

CBQ, there could be situations where the performance of real-time sessions is affected un-

der the Formal-Link-Sharing or even the more restricting Ancestor-Only rules [6]. To avoid

the effect on real-time sessions, a more restrictive Top-Level link-sharing policy is defined.

Another difference between H-FSC and CBQ is that with H-FSC, priorities for packets

are dynamically assigned based on its service curves, while with CBQ, they are statically

assigned based on priority classes. In CBQ, the link-sharing rule is affected only by band-

width; once packets become eligible, they will have a static priority. This has some unde-

sirable consequences. As an example, consider the class hierarchy in Figure 1, assume that

CMU has many active video streams (priority 1) but no data traffic (priority 2), according

to the link-sharing rule, CMU video traffic will become eligible at a rate of 25 Mbps. Once

become eligible, they will all be served at the highest priority by the general scheduler.

This will negatively affect not only the delay bound provided to U. Pitt's real-time traffic,

but also the average delay of U. Pitt's data traffic, which is served by the general scheduler

at a lower priority. In contrast, H-FSC provides much stronger firewall protection between

different classes. The service curve for a leaf class will be guaranteed regardless of the

behavior of other classes. In addition, link-sharing among classes is also dictated by service

curves. The excess service received by a class will be limited by its ancestors' service curves,

which specifies both bandwidth and priority in an integrated fashion.

Like H-FSC, H-PFQ is also rooted in a formal framework. The major difference between

H-PFQ and H-FSC is that H-FSC decouples the delay and bandwidth allocation, thus

achieves more flexible resource management and higher resource utilization. In addition,

unlike H-PFQ where a session's delay bound increases as the depth of the hierarchy, the

delay bound provided by H-FSC is not affected by the depth of the hierarchy.

In this paper, we use service-curve based schedulers to achieve decoupling of delay and

bandwidth allocation. In [10, 15], it has been shown that more general service curves

than linear curves can be supported by GPS. However, this general resource assignment of

GPS is only possible if all relevant sessions in the entire network be policed at the source.

28

Therefore, sources will not be able to opportunistically utilize the excess bandwidth by

sending more traffic than reserved. It is unclear whether link-sharing can be supported

in such a network. With H-FSC, the scheduler guarantees a minimum service curve to a

session regardless of the behaviors of other sessions in the network. In addition, it does not

require that the session's input traffic to be policed at the network entrance, thus allows

sources to statistically share the excess bandwidth inside the network. Furthermore, even

for real-time services that do not allow link-sharing, service-curve based schedulers will

achieve a larger schedulability region than GPS with general resource assignments.

8 Conclusion

We make two important contributions. First we define an ideal Fair Service Curve link-

sharing model that supports (a) guaranteed QoS for all sessions and classes in a link-sharing

hierarchy; (b) fair distribution of excess bandwidth; and (c) priority service or decoupled

delay and bandwidth allocation. By defining precisely the ideal service to be supported, we

expose the fundamental architecture level tradeoffs that apply to any schedulers designed to

support link-sharing, real-time, and priority services. As a second contribution, we propose

a novel scheduler called H-FSC that can accurately and efficiently approximate the ideal

Fair Service Curve link-sharing model. The algorithm always guarantees the performance

for leaf classes while minimizing the discrepancy between the actual services provided to

the interior classes and the services defined by the ideal model. We have implemented the

H-FSC scheduler in the NetBSD environment, and demonstrated the effectiveness of our

algorithm by simulation and measurement experiments.

References

[1] J.C.R. Bennett and H. Zhang. Hierarchical packet fair queueing algorithms. In Pro-

ceedings of the ACM-SIGCOMM 96, pages 143-156, Palo Alto, CA, August 1996.

[2] J.C.R. Bennett and H. Zhang. WF2Q: Worst-case fair weighted fair queueing. In

Proceedings of IEEE INFOCOM'96, pages 120-128, San Francisco, CA, March 1996.

29

[3] R. Brown. Calendar queues: A fast 0(1) priority queue implementation for the sim-

ulation event set problem. Communications of the ACM, 31(10):1220-1227, October

1988.

[4] R. Cruz. Service burstiness and dynamic burstiness measures: A framework. Journal

of High Speed Networks, 1(2):105-127, 1992.

[5] R. Cruz. Quality of service guaranteed in virtual circuit switched network. IEEE

Journal on Selected Areas in Communications, 13(6):1048—1056, August 1995.

[6] S. Floyd and V. Jacobson. Link-sharing and resource management models for packet

networks. IEEE/ACM Transactions on Networking, 3(4), August 1995.

[7] L. Georgiadis, R. Guerin, and V. Peris. Efficient network QoS provisioning based on

per node traffic shaping. In IEEE INFOCOM'96, San Francisco, CA, March 1996.

[8] S. Golestani. A self-clocked fair queueing scheme for broadband applications. In

Proceedings of IEEE INFOCOM'94, pages 636-646, Toronto, CA, June 1994.

[9] P. Goyal, H.M. Vin, and H. Chen. Start-time Fair Queuing: A scheduling algorithm

for integrated services. In Proceedings of the ACM-SIGCOMM 96, pages 157-168,

Palo Alto, CA, August 1996.

[10] A. Parekh. A Generalized Processor Sharing Approach to Flow Control in Integrated

Services Networks. PhD dissertation, Massachusetts Institute of Technology, February

1992.

[11] H. Sariowan, R.L. Cruz, and G.C. Polyzos. Scheduling for quality of service guaran-

tees via service curves. In Proceedings of the International Conference on Computer

Communications and Networks (ICCCN) 1995, pages 512-520, September 1995.

[12] S. Shenker, D. Clark, and L. Zhang. A scheduling service model and a scheduling

architecture for an integrated services network, 1993. preprint.

[13] I. Stoica and H. Abdel-Wahab. Earliest eligible virtual deadline first: A flexible and

accurate mechanism for proportional share resource allocation. Technical Report TR-

95-22, Old Dominion University, November 1995.

30

[14] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J. Gehrke, and G. Plaxton. A pro-

portional share resource allocation for real-time, time-shared systems. In Proceedings

of the IEEE RTSS 96, pages 288 - 289, December 1996.

[15] Z. Liu Z.-L. Zhang and D. Towsley. Closed-form deterministic performance bounds

for the generalized processor sharing scheduling discipline, 1997. To appear journal of

Combinatorial Optimaization.

[16] H. Zhang. Service disciplines for guaranteed performance service in packet-switching

networks. Proceedings of the IEEE, 83(10):1374-1399, October 1995.

[17] H. Zhang and D. Ferrari. Rate-controlled service disciplines. Journal of High Speed

Networks, 3(4):389-412, 1994.

31

Appendix

In this section we prove the main theoretical results of the paper, concerning both real-

time guarantees and fairness. Theorem 2 shows that the service curve of any leaf class is

never violated by more than rmax, where rmax represents the transmission time of the packet

of maximum length. This result is optimal in a system in which the packet transmission is

assumed to be non-preemptable. Theorem 3 shows that the difference between the virtual

times of any two sibling leaf classes is always bounded. Since the virtual time keeps track of

the work progress of each class, this result shows that the discrepancy between the service

actually received by a class from the service it should receive in an idealized fair system is

bounded.

In the remaining of this section we assume that, unless otherwise specified, all the func-

tions are well defined over the specified intervals. Also, we assume that any non-decreasing

function /(•) has an "inverse", /_1(-), defined as follows: /_1(y) is the smallest value x such

that f(x) = y (here, we implicitly assume that there exists such an x). Finally, we make

the observation that the "inverse" of any non-decreasing function is also non-decreasing.

We start with some simple definitions and results that hold for any non-decreasing func-

tion /(•). Consequently, these results can be applied to any service curve, and in addition,

as we will show in Lemmas 3 and 4, to the deadline and eligible curves as well.

Definition 1 The envelope of an arbitrary function /(•), denoted, fmax(:) is defined as

fmax(t) = max(f(t' + t)-f(t')). (13)

In words, the value of a function envelope at t, fmax(t), represents the maximum difference

between the values of /(•) among all pairs of points situated at the distance t apart from

each other. From the above definition we have

Lemma 1 Consider an arbitrary function /(•). Then, for any time t and for any At > 0,

we have

f(t + At)<f(t) + fmax(At). (14)

32

For convenience, in the followings we limit our discussion to non-decreasing functions

only.

Definition 2 Let /(•) be a non-decreasing function. Then, the burstiness associated to

/(•), denoted B-f(-), is defined as

B'(t) = max(/(*' + *) - /(*')) - rmn(f(t' + t) - f(t')). (15)

Also we define maximum burstiness of function /(•), denoted B^ax, as

B{nax = mzxBi{t). (16)

Without loss of generality, in this paper we restrict our attention to service curves with

bounded maximum burstiness. To get the intuition behind the above definitions, in Fig-

ure 14 we present the envelope and the burstiness functions associated to a two-piece linear

concave function, and a two-piece linear convex function, respectively.

The following result bounds the difference between the values of a non-decreasing function

/(•) in two arbitrary points at the distance At from each other, in which the function is

defined.

Lemma 2 For any non-decreasing function /(•) that is zero in origin (i.e., /(0) = 0), and

any time interval. [t,At), we have

f(At) - Bf(At) < f(t + At) - f(t) < f(At) + Bf(At). (17)

Proof. Both the right-hand side and the left-hand side inequalities follow directly from

Definition 2. More precisely, for the right-hand side, we have

B'(At) = mzx(f(t' + At)-f(t'))-rnm(f(t' + At)-f(t')) (18)

> f{t + At) - fit) - rmnifit' + At) - /(*'))

> fit + At)~fit)-ifiAt)-fiO))

= fit + At)-fit)-fiAt).

Similarly, for the left-hand side inequality we have

33

Bf(At) = max(f(t' + At)-f(t'))-mm(f(t' + At)-f(t')) (19)

> f(At)-f(0)-mm(f(t' + At)-f(t'))

> /(At) - (f(t + At) - /(<)),

which concludes the proof. D

Without loss of generality, in the remaining of this section, we assume that all service

curves are non-decreasing functions, which are zero in origin. The next lemma shows that

the deadline curve is a non-decreasing function, as well. Next, since when a session becomes

active for the first time its deadline curve is initialized to the service curve, it follows that

the deadline curve is also zero in origin. Finally, since the virtual curve definition is identical

to the one for the deadline curve (only the points in which it is updated are different), it

follows that Lemmas 1 and 2 can be applied to all service, deadline, and virtual curves.

Lemma 3 Consider a session i characterized by the service curve «%(•). Then the deadline

curve Di(-) is non-decreasing.

Proof. The proof is by induction on the moments of time when session i becomes active

(according to Eq. (7) these are the only times when A(") may change).

Basic Step. First time when session i becomes active, D;(-) is initialized to Si(-) and

therefore the lemma is trivially true.

Induction Step. Let ta be a time when session i becomes active. For clarity let Dfd(-)

be the deadline curve of session i at t~, and let D^ew(-) be the updated deadline curve

immediately after session i becomes active at time ta. Then, according to Eq. (7), we have

DTw{t) = min(D?d(t), St(t - ta) + a), t > (D?d)-\«). (20)

Next, chose two arbitrary points t2 and ti, such that t2 > ti > (£)°w)_1(c8). Then, to show

that the new computed deadline curve, D"ew(-), is non-decreasing it suffices to show that

Dnew{tl) < Dnew(t2). From Eq. (20), we obtain

Drw(t2) - Drw(U) = mm(Dfd(t2), St(t2 - ta) + cz) - min(D?d(U), S,(n - ta) + a). (21)

34

Since both Dfd(-) and £,•(•) are assumed to be non-decreasing, we have Dfd(t2) > Dfd{h),

and Si(h ~ ta) > Siih - ta), which gives us D?™{t2) > D?™{h). D

Lemma 4 Consider a session i characterized by the service curve Si(-). Then the eligible

curve Ei(-) is non-decreasing.

Proof. We need to show that Ei(ti) < Ei(t2), for any ti < t2. From Eq. (10), we have

EiM-EiiU) = A(^) + [max(A(0-A(^)-^(f-t2))]+- (22)
t >^2

(Di(h) + [max(A(0 - Di(U) - Stf - *x))]+).

For simplicity of notation let b(t) = maxf/>t(A(^) - Dz(t) - Si(t' - t)). We consider the

following four cases.

Case 1. (bi(t2) < 0, &;(^i) < 0.) Then, from Eq. (22) and Lemma 3, we have

Ei(t2) - Ei(h) = Di(t2) - Di(h) > 0. (23)

Case 2. (6,-(*2) > 0, 6,-(*i) < 0.) Since Ei(t2) > Dt(t2), and E^U) = A(*i), this case

reduces to the previous one.

Case 3. (bi(t2) < 0, bi(ti) > 0.) From here, we have

Ei(t2) = Di{t2) > D,{t2) + bi{t2) = max(A(0 - Stf - t2)), (24)

and

Ei(h) = DiiU) + biih) = max(A(*') - #(*' - <i))- (25)
Oil

Let tma:r be the value of t' that maximizes Di(t') — Si(t' — ti). Hence

Ei{t\) = Di(tmax) — Si(tmax — ti). (26)

Now, by replacing t' -> tmax -\-t2-ti in Eq. (24) we obtain

Ei(t2) > max(A(t,)-5'.-(<,-*2)) (27)

> Di{tmax -\- t2 — t\) — Di(tmax — t2).

35

Finally, by combining Eqs. (26) and (27), we have

Ei(t2) - Eiih) > Dt(tmax + t2- h) - St(tmax - t2) + Si(tmax - U) - Di(tmax) (28)

> Di(tmax + t2~ h) - Di(tmax),

where the last inequality follows from the fact that tmax - tx > tmax - t2 and S.-(-) is

decreasing. Further, since as shown in Lemma 3 £),-(■) is non-decreasing the proof of thi

case follows.

non-

s

Case 4. (bi(t2) > 0, &;(^) > 0.) The proof is practically identical to the one of the previous

case. The only difference is that now Ei(t2) is strictly equal to Di(t2) + bi(t2). D

The next lemma shows that the difference between the deadline values at two moments

in time during an interval when a session is active, is bounded by the difference between

the values in the same points of its (translated) service curve.

Lemma 5 Consider session i characterized by the service curve Si(-). Then, for any time

interval [tut2) while session i is active, there exists the times t',t" < tx such that

Di(t2) - A(*i) < Si(t2 - f) - SiiU - t'), (29)

and,

Di(t2) - DiiU) > Si(t2 - t") - StiU - t"). (30)

Proof. (Ineq. (29)) Let t' be the latest time no larger than tx when, by updating the

deadline curve Dz(-), the value D,-(ix) changes. From the algorithm in Figure 6 and Eq. (7)

it is easy to see that this happens only if session i becomes active at time t', and if the old

value of D,-(<i) is larger than 5,-(<i - t') + Wl{t'). Then, after updating £,-(•) at time t', we

have

and similarly

Di(t1)-wi(t') = Si(t1-t'), (31)

Di(t2)-wi(t') = Si(t2-t'). (32)

36

Since between t' and tx the value of Di(t\) does not change, and since the value of Di(t2) can

only decrease if updated between t' and t2 (see Eq. (7)), by combining Eqs. (31) and (32)

we have

Di(t2) - Di{h) < Si(t2 - t') - St(h - t'). (33)

(Ineq. (30)) Let t" be the latest time no larger than t\ when, by updating the deadline

curve D{(-), the value Di(t2) changes. Then, similarly to the previous case we have

Di(t2)-Wi(t") = Si(t2-t"). (34)

From the definition of the deadline curve (see Eq. (7)), at time t" we also have

A-(*i)-«>,■(*") <#(*i-<")- (35)

Finally, according to the same Eq. (7), if A'(-) is modified at a latter time (i.e., between t"

and ii), then A'(^i) can only decrease. Hence, by combining Eq. (34) and Ineq. (35), we

finally obtain

Di(t2) - Di(h) > Si(h - t") - Si(U - t"). (36)

D

The next three results prepares the ground for proving the first main result of this section.

Theorem 1 shows that as long as the deadlines of all packets of a session are met, then its

service curve is also guaranteed. Further, Lemmas 6 and 7 bounds the maximum service

time requested by any session over a time interval while it is active.

Theorem 1 The service curve of a session is guaranteed, if each of its packets is trans-

mitted before its deadline.

Proof. Assume this is not true. Let W{(t, t') be the service time received by session i during

the time interval [t,t'), and let Wi(t) be the total service time received by session i by time

t. Let s be the earliest departure time of a packet of session i when its service curve is

violated. Then, for any time t < s when session i is passive we have Wi(t,s) < Si(s — t)

37

(otherwise, according to Definition of the service curve, Si(-) is satisfied at time s). Let

61 be the latest time no larger than s when by updating the deadline curve Dt(-), ^e

value Di(s) changes. From the algorithm in Figure 6 and Eq. (7) it is easy to see that this

happens only if session i becomes active at time si, and if the old value of Di(s) is larger

than Si(t — si). Then, after updating A(-)> we have

Di(s) - Wiisi) = Si(s -Sl). (37)

Next note that the deadline of the packet sent at time s is simply Dj'1(wi(s)) (see the

algorithm in Figure 6). Since we assume that all deadlines are satisfied, it follows that

Dj [wi(s)) > s. From here, we have

w{(s) > Di(s). (38)

Finally, since w^s^s) = Wi(s) - u;,-(si), from Eq. (37) and Ineq. (38) it follows that

Wi(s, si) > Si(s — si), which concludes the proof. D

The next lemma gives an upper bound on the service that a session may request over

any future time interval. The service requested by a session is defined formally as follows.

Definition 3 The total service requested by session i at time t (when it is active) is Di(t).

Lemma 6 Let Wi(t) be the total service time received by session i by time t. Then, the

maximum service time requested by session i over any future interval [t,ti) is achieved when

the session is continuously backlogged during this interval.

Proof. Consider two cases, whether session i is passive or not at time t.

Case 1. (session i is active at time t) Then the additional service time requested by session

i between t and tx, denoted r,-(i,^), is bounded as follows

ri{t,ti)< Di{tx)-Wi{f), (39)

where the equality holds when session i has a packet with the deadline tx.

Next, assume that session i becomes passive at some time t' < tx. Then, we have two

sub-cases, whether the session becomes again active before tx, or not. If it becomes again

38

active, then from Eq. (7), it is easy to see that the new value of Di(t\) cannot increase. On

the other hand, if the session remains passive by time ti, then the total requested service

time over the interval [Mi) is bounded as follows

r.-(Mi) < A(0 - Wi(t) < Di(h) - Wi(t), (40)

where the last inequality follows from the fact that A(-) is a non-decreasing function.

Thus, we have shown that if at any point between t and t\ session i becomes passive, then

Diiti) does not increase, and consequently the upper bound of the maximum service time

requested by session i over the interval [t,ti) will not increase.

Case 2. (session i is passive at time t) Let pi(t',t) denote the value of Di(t) if session i

becomes active at time t', and remains continuously backlogged until time t. Next, from

Eq. 7, it is easy to see that pi(t', ti) is a non-decreasing function in t'. Therefore pi(t', t), and

consequently A(^i) is maximized when session i becomes active at time t+, and remains

continuously backlogged until t\. □

Lemma 7 Let i be a sessions that has no eligible request at time t. Then the service

requested over any future interval \t,t\) is no larger than Si(t\ —t).

Proof. We consider two cases, whether session i is active at time t, or not.

Case 1. (session i is active at time t.) Let Wi(t) be the service time received by session i

by time t. Since the session is not eligible at time t it follows that:

Ei(t) > Wi(t). (41)

Since the maximum service requested by session i by timetfi is Di(ti), it follows that between

t and ti session i requests at most an additional A(^i) — E{(t) service. By substituting

Ei(t), and using Ineq. (41), we have

AM - «>,-(*) < A(ti)-A(t) (42)

= A(<i) - Di(t) - [max(A(0 - Di(t) - Stf - t))]+

< Diih) - Dt(t) - [A(ti) - Di(t) - Siih - t)]+.

39

Further, note that for any two reals x and y, we have x — [x — y]+ < y. By substituting

x <r- {Di(ti) - Di(t)) and y «- Si(tx -t), respectively, we finally obtain

Diit^-Wi^KSiih-t). (43)

Case 2. (session i is passive at time t) Assume that i becomes active at time t', such

that t < t' < ti. (If t' > ti, then session i does not request any service time during the

interval [Mi), and therefore the lemma is trivially true.) Then, since Wi(t) = Wi(t'), and

from Eq. (7) it follows that

£,-(*i) - Wi(t) = Diih) - Wi(t') < St{h - f) < Si{h - t). (44)

which concludes the proof. D

Theorem 2 The H-FSC algorithm guarantees that the deadline of any packet is not missed

by more than rmax, where rmax represents the time to transmit a packet of maximum length.

Proof. Assume the deadline, df, of the k-th packet of session / is missed by more than

Tmax. Let B denote the set of all sessions that prior to time df have at least a deadline

larger than df. Then, let tx be the largest time no greater than df, when a session in B

receives service time, if any. Similarly, let t2 denote the largest time no greater than df,

when the server is idle. Finally take s = m&x(t1,t2).

Let .4i(s) denote the set of all sessions active at time s that have a deadline smaller

than df. Clearly, there is no session in A^s) having an eligible request at time s. (Other-

wise, no session in B can be served at time s, or alternatively, the server cannot be idle.)

Consequently, we have

Ei(s) > Di(s), for any i e Ai(s). (45)

Then it is easy to see that only the sessions in A^s), and eventually new sessions that

become active after time s can be served before df. Let C denote the set of all these

sessions. Then, according to Lemma 7 the maximum service time requested by any of

these sessions over the interval [s,df) is no larger than Sz(df - I). Consequently, the total

service time requested by all sessions during the interval [s,df) is no larger than

40

£$(<#-a) < <*? - s, (46)
iec

where here, for simplicity, we consider a server with rate 1. Next, note that the transmission

of the packet served at time s is completed no latter than 5 + rmax. Since between this

time and time df + Tmax only the packets of the sessions in C are served, it follows that the

sessions in C receive at least df + rmax — (s + Tmax) = df — s service time. Since as shown

by Eq. (46), the sum of all requests with the deadline no larger than df is no larger than

df — s, it follows that the request of session / is served as well (i.e., its packet is transmitted

by time df — s), which contradicts the hypothesis, and therefore proves the theorem. D

The next six lemmas are used to prove Theorem 3, i.e., the difference between the virtual

times of two simultaneously active leaf classes (sessions) is bounded. Lemma 8 bounds the

total service Ci(t) received by session i each time it was selected based on its eligible time

and deadline, while Lemma 10 (using the results of Lemma 9) bounds the same service

time received by session i over an arbitrary interval of time while session is active. Next,

Lemmas 11 and 12 provide bounds for a session's virtual curve in terms of its service curve.

Finally, Lemma 13 bounds the increase in the discrepancy between the virtual times of two

leaf classes while they are simultaneously active.

Lemma 8 For any time t when session i is active we have

Diyt Tmax) H,max _ Ql^J _; *-Jiy') \ H,max) \ ')

where rmax represents the time to transmit the packet of maximum size, and U,max represents

the maximum size of a packet of session i.

Proof. (Di(t — Tmax) — U^max < Cj{t)•) Assume this is not true, i.e.,

■L'iyt ^~max) *> Ci\t) i H,max V^"/

Let d be the deadline of the packet at the head of the queue, and let /; be its length.

Then, according to the algorithm in Figure 6, we have d = D~l{ci(t) + /,-). Since D~x is

non-decreasing, it follows that d < Dj1^^) + li,max)- On the other hand, from Ineq. (48)

we have t — Tmax > Z)I~
1(c,-(<) + li,max)- From here it follows that

41

d + rmax < t. (49)

Thus, at time t the deadline of the packet at the head of the queue of session i is already

missed by more than d + rmax, which contradicts Theorem 2 and therefore proves this case.

(ci(t) < Ei(t) + liiTnax.) Let ti be the latest time no larger than t when a packet of session i is

scheduled, and let l% be the length of this packet. Then, at time tXl we have Ei(ti) > Ci(tx),

and further a(t) = Ci{tx) + lt < Ci(tx) + liimax < Ei(tx) + lhmax. Since £,■(•) is non-decreasing

(see Lemma 4) the proof follows. □

Lemma 9 For any times tx and t2, such that tx < t2, and for any session i characterized

by the service curve Si(-), we have

Si(t2 - h) - Bs'(t2 - tx) < Ei(t2) - Dt(tx) < Si(t2 - tx) + B%ax + BSi(t2 - tx). (50)

Proof. From the definition of the eligible curve (Eq. (10)) we have

Ei(t2) - DiiU) = Di(t2) + [max(A(0 - A(*2) - St(t' - t2))} + - D{{tx). (51)

We consider two cases: (1) maxtl>t2(Di(t')-Di(t2)-Si(t'-t2)) > 0, and (2) maxt>>t2(Di(t')-

Dt(t2)-Si(t'-t2))<0.

Case 1. From Eq. (51) we have

Ei(t2) - Diih) = A(i2) + max(A(0-A-(t2) + 5!(t'-^))-A(^) (52)

= max(A(0-5,-(<'-<2))-A(<i)

= max(A(0 - A(<i) - Si(t' - t2)).

Further, from Lemma 5 it follows that there exists a time t0 < tx, such that Di(t')-Di(tx) <

Si(t' - t0) - Si(t! - t0). From here, and by using Lemmas 1, 2 and Definition 2, we obtain

Ei(t2) - DiiU) < max(5,-(*,-t0)-5,-(<1-<o)-5,-(<,-t2)) (53)

= max(5t((i2 - t0) + t'- t2) - Siih - t0) - Si(t' - t2))

42

< max(Si(t2 - to) + Si:max(t' - t2) - Si(t1 - t0) - Si(t' - t2)) (Lemma 1)
i'>*2

= Si(t2 - t0) - Siih - t0) + mcix(Sitrnax(t' - t2) - Si(t' - t2))

< Si(t2 - to) - Si(n - t0) + B*ax (Definition 2)

< Siih-hj + B^ih-t^ + B^ (Lemma 2).

Case 2. In this case, Eq. (51) reduces to

Ei(t2) - Difa) = Di(t2) - Diih). (54)

Similar to the previous case, from Lemma 5 it follows that there exists a time to < £i, such

that Di(t2) — Di(t\) > Si{t2 — to) — Si{t\ — to). Further by using Lemma 2, we have

Di(t2) - Di(h) > Si(t2 - to) - Si(n - t0) > St{t2 - h) - Bs'(t2 - U). (55)

Since the proof for the left-hand side of Ineq. (50) is similar to the previous proof we

omit it here. D

Lemma 10 Consider session i characterized by the service curve Si(-). Then, for any

interval [t\,t2) while session i is active, we have

Si(t2 - h) - di{t2 - tx) < c%(tut2) < Si(t2 - h) + 9i(t2 - U) + B%ax, (56)

where

i\) = \) ' ^i,max\J~raax) T ^H,max- V /

Proof. By applying Lemma 8 for tx and t2 we get

Di(ti — rmax) — U^max < Ci\t\) < Ei(ti) + li,max, and (58)

^i\^2 Tmax) H,max _r Ci\l2) _^ -I-Ji\''2) T H,max

Since Ci(ti,t2) = Ci(t2) — c,-(ti), from here we have

Di(t2 — rmax) — Ei\ti) — 2litTnax < Ci(ti,t2) < Ei(t2) — Di(ti — Tmax) -\- 2lijmax. (59)

For the left-hand side inequality we have

43

Ci(h,t2) > Di(t2 - rmax) - Eifa) - 2littnax (60)

= Di(t2 - Tmax) - Diih) + DiiU) - EiiU) - 2litmax

> Di(t2 — Tmax) — Di(ti) — 2litTnax,

where the last inequality follows from the fact that Di(t) is never larger than E{(t) (see

Eq. 7). From Lemma 5 it follows that there exists a time t" < mm(tu t2 - rmax), such that

Ci(tut2) > Si(t2 - rmax - t") - Si(U - t") - 2lhmax (61)

> Si(t2 — rmax — ti) — B *(t2 — rmax — ti) — 2li,max

> Si{t2 — ti) — Sitmax(rmax) - B '{t2 - Tmax —t]) — 2li<max

> Si(t2 - tx) - Si%max{Tmax)B '(t2 - ti) - 2li,max,

where the second inequality follows from Lemma 2, and the third inequality follows from

Definition 2.

Next, by applying again Lemmas 9 and 2 we prove the right-hand side of Ineq. (59).

Ci(ti,t2) < Ei(t2) - Di(n - rmax) + 2litmax (62)

< Si(t2 - tx + rmax) + B%ax + Bs'(t2 - t,) + 2h<max

< Si{t2 - tx) + Si,max{Tmax) + B%ax + Bs'(t2 - h) + 2liimax.

Ü

Lemma 11 For any session i characterized by the service curve Si(-), and for any interval

[t,t + At] while the session is active, we have

Si(At) - Bs'(At) < Vi(t + At) - Vi{t) < Si(At) + Bs*(At). (63)

Proof. (Vi(t + At) - Vi(t) < Si(At) + Bs'(At).) Let tx be the latest time no larger

than t when the value of Vi(t) has been modified. Then, according to Eq. (11) we have

Vi(t) = Si(t - Vi) + Wi{ti), where u,- represents the average between the maximum and the

44

minimum virtual times of any two sessions active at time t1; if any, and Wi(t\) represents

the total service time received by session i so far. Consequently, the value of Vi(t + At)

computed at time t\ is at most Si(t + At — V{) + tUj(ti). Since from the definition of the

deadline curve its value cannot increase when it is eventually again updated after tj (see

Eq. (7)), it follows that

Vi(t + At)-Vi(t) = Vi(t + At) - Si(t - Vi) - wi(h) (64)

< Si(t + At- v^ + Wi(tx) - Si(t - v^ - Wi(ti)

< Si(t + At - vt) - Si(t - Vi)

< Si(At) + Bs'(At),

where the last inequality follows from Lemma 2.

(Si(At) — Bs'(At) < Vi(t + At) — Vi(t).) The proof is similar to the previous case, and

therefore we do not give it here. The only difference is that in this case choose t\ to be the

latest time no larger than t when the value of Vi(t + At) is updated. D

Lemma 12 For any session i characterized by the service curve S'i(-), and for any time

interval t while the session is active, we have

Sr\t) - S-,LÄB^ax) < V-\t) < ST\t) + S~LÄBLX). (65)

Proof. We give the proof for the left-hand side inequality. (The proof for the right-hand

side inequality is identical.) From Lemma 11, for any x > 0, we have

Vi(x) < Si(x) + Bs'(x) < Si(x) + B*„. (66)

Next by substituting t = Vi(x) in the above equation, we have

* < Si{Vr\t)) + B%ax =» Sr\t - B%ax) < V~l{t). (67)

Further, by using Lemma 1 the proof follows. D

Lemma 13 For any two sibling sessions (leaf classes) i and j that are simultaneously

active during the interval [ti,^); the difference between their virtual times at any time

t £ [ti,t2) is bounded as follows

45

min(üJ(t1) - v3(U), 0) - Sj,i < Viit) - v3(t) < max(t;,-(<1) - v3(h), 0) + 8h3, (68)

where

&ij = ^LÄk^ + B^ + l^^ + Sr^B^ + S-^AO^ + S-^B^J, (69)

Qi,max = max9l(t).
<>0 v '

Proof. Let t0 be the largest time, if any, in the interval [tut) when session i is selected

based on its virtual time. We consider two cases whether time t0 exists or not.

Case 1. (t0 exists.) If session i was selected at time t0 based on its virtual time, then

the followings are true: (1) neither session i nor session j have an eligible packet, i.e.,

Ci(t0) > Ei(t0) and Ci(t0) > Ei(t0), and (2) the virtual time of session i is smaller than the

one of session j, i.e., Vi(t0) < v3(t0). Since after that and until time t session i is never

served based on its virtual time, the total service receive by session i during the interval

[t0, t] is

Wi(t0,t) = a(t0,t) + U, (70)

where /,- is the length of the packet served at time t0. On the other hand, the service time

received by session j during the same time interval is

u>j(*o,<)>Cj(*o,<), (71)

Now, note that

Vi(t) = V-^w^t)) = Vr^WiiU) + Wi(t0,t)) = V-l(wi(to) + a(t0,t) + /,-), (72)

and

Vj(t) = V-\w3(t)) > Vf\w3(t0) + c3(t0,t)). (73)

Further, by using Lemmas 1, 10, and 12, we have

46

•

VTW*O) + C,-(*O, *) + *.-) < Vr^WiitoV + Vr^iaito^ + li) (74)

< ^o) + Vr^ax(Si(t - t0) + 6i,max + B%ax + /,-)

< Vi(t0) + sr'iSiit -t0) + eltmax + B*ax + U) + s-^ax(B^ax)

< Vi(t0) + Sf (Si(t - t0)) + Si,max{6i,rnax + B^ax + h) + S~max(Bmax)

< Vi(to) + t — t0 + SitTnax(0i,max + Bmax + ««') + $i ,max\B max)

< Vi\to) + t — t0 + Simax(0hmax + B^ax + li,max) + Si,max(Bmax)-

and

V^K-M + c^Mo)) > V-\Wj{to)) + V-yn{Cl{t,to)) (75)

> V-\w3{t0)) + V-^in(S3{t - to) - 0,)

= v3(to) + V-7lm(SJ(t-to)-0J)

= Vj(to) + S-1(S3(t-to)-0J)-S-Xax(B%ax)

> Vj(t0) + S~ (Sj(t - to)) - S~max(03) - S~max(Bjax)

— vj(to) + (t — to) - Sjimax(0j) - S-max(B^ax).

Since Vi(t0) < Vj(t0), by combining Eqs. (72), (73), (74) and (75) we obtain

Vi(t) - Vj(t) < S-^Ahmax + B*ax + li,max) + Sr\B^ax) + S'XaM) + Sj^B^). (76)

Case 2. (t0 does not exist.) This case is very similar to the previous one. The only

difference is that we compute the differences between the virtual times over the interval

[ti,t), instead [to,t). D

Theorem 3 The difference between the virtual, times of any two sibling sessions i and j

that are simultaneously active at time t is bounded as follows

- Smax - Sjti < Vi(t) - Vj(t) < 8max + 8ij, (77)

where

Smax = max Sij. (78)

47

Proof. The proof is by induction on the moments of time t0, t1} ..., when a session become

active. Without loss of generality we assume that at any time only one session may become

active.5

Basic Step. Since the first session becomes active at time t0 and since between t0 and t1

this is the only active session, Ineq. (77) is trivially true.

Induction Step. Consider an arbitrary session i that becomes active at time tk, and let tk+1

be the time when the next session becomes active. Let jx and j2 be the active sessions with

the minimum, respectively the maximum virtual time at time tk, i.e.,

Vjiih) - vh(tk) = max (vi(tk) - vm(tk)). (79)

According to the induction hypothesis

v32{tk) - vh(tk) < Smax + Sjltj2 < 28max. (80)

Recall that when session i joins the competition at time tk its virtual time is initialized to

Vi{tk) = (vn(tk)-vn (tk))/2. Then, from Lemma 13 it follows that for any time t e [tk, tk+i),

the difference between the virtual time of session i and of any other session j that is active

in the entire interval [tk,tk+1) is bounded as follows

v%(t)-Vj(t) < ma,x(vi(tk)-v3(tk),0) + 8it3 (81)

Since Vj^tk) < Vj(tk), further we have

vz(t)-v3(t) < m^^^-^^.OJ +5fj (82)

To get the inferior bound, we proceed similarly

5If there are two or more sessions that become active simultaneously we simply consider that they

become active at t, t + e, t+ 2e, ..., and make e -> 0.

Vi(t) - Vj(t) > mm(vi(tk) - Vj(tk), 0) - 8Jtl (83)

= mm I 2 - Vj(tk), 0 I - Sjti

> mml- 2
y,0l -^

^•2(^)-^iifa) j

D

Since for any linear function /(•) we have B^ax
= 0> from the previous theorem and

Lemmas 10 and 13 we have the following result.

Corollary 1 Consider two sibling sessions (leaf classes) i and j characterized by linear

service curves with slopes rt- and rj, respectively, that are simultaneously active during the

interval [ti,t2). Assume that the switch capacity is C. Then, the difference between their

virtual times at any time t £ [^1,^2) is bounded as follows

Smax - 8j,i < Vi(t) - Vj(t) < 8max + Sij, (84)

wh ere

and

c 0'i,mai ^j,raax ''max (or\
°i,j = 3 r I h -77-, (00)

Ti Tj C

/ 3 2 1 \
0~max = Imax 1 l~ 77 ■• (^) \rt r3 CJ

49

. Service curve of video session Service curve of FTP session

Arrival packets for video session

t t t
t(ms)

0

.3 .1

67

Airival curve

t(ms)

Deadline computation

t(ms)

Arrival packets for FTP session

-* 4 L

t(ms)

Deadline Computation

t(ms) 0 8 16 24 32 40 48 56 64 72 80 88 96

^ i Service curve of video session Service curve of FTP session

t(ms)
Arrival packets for video session

t t t.
t(ms)

Arrival packets for FTP session

0

J~

t(ras)

Deadline computation

t(ms)

Deadline Computatioi

i * t 0 10 43 77 l(ms) 0 14 22 30 38 46 54 62 70 781 (^

Departing times Departing times

t .1 -i:t
32.5 65 97.5 t(ms)

t t t
0 32.5 65 ,(ms)

(a) (b)

Figure 2: An example illustrating the benefits of delay-bandwidth decoupling. The video

session requires a bandwidth of 2 MBps and has a delay target of 10 ms. The FTP session

requires 8 Mbps. The total capacity of the link is 10 Mbps. (a) The service curves and the

resulting schedule when only bandwidth is used to specify the sessions' requirements. The

delay of the video packets is over 26 ms. (b) The service curves and the resulting schedule

when delay and bandwidth are both specified for each session. The delay of the video packets

is now less than 10 ms.

50

8t 1

(a) (b) (c) (d)

Figure 3: An example illustrating the "punishment" of a session under SCED policy: (c)

session 1 does not receive any service during (to,tx], after session 2 becomes active at to.

(d) A modified version of SCED that tries to not penalize session 1 at all, but violates

session 2 's service curve.

w<

/wa

^_^/ '■'W */ "Root
1

(a) (b)

Figure 4: An example illustrating why it is not possible to guarantee the service curves of

all the classes in the hierarchy, (a) The hierarchy and the service curves of each node, (b)

The service received by each session when sessions 2, 3, and 4 become active at time 0;

session 1 becomes active at time to-

51

receive_packetO',p) /* session i has received packet p */

enqueue(queuei: p);

if (i $. A) /* if i was not active */

update_ed(i,0,jo); /* update £,-(•), Di(-), compute ei; di */

update_v(i,p); /* update V(-) for i and its ancestors */

A = A U {i}; /* mark i active */

get_packet() /* get next packet to send */

i = m'mdt{i € A \ et < t}; /* select by real-time criteria */

if (i / 0) /* does such session exists ? */

p =dequeue(#ueuej);

update_v(i,jt>); /* update virtual time */

if (queuei ^ 0)

update_ed(i,p, head(queuei));

else

.4 = .4 \ {?'}; /* mar& i passive */

else /* se/eci active ses. by link-sharing criteria */

i = min^ 4;

jo =dequeue(z);

update_v(i,jo)

if (queuei ^ 0)

update_d(z',/>, head(queuei)) /* update di only*/

else

.4 = .4\{«};

send_packet(jo);

Figure 5: 7%e Hierarchical Fair Service Curve (H-FSC) algorithm. The receive_packet

function is executed every time a packet arrives; the get_packet function is executed every

time a packet departs (to select the next packet to send).

52

update_ed(i, p, nextjp)

if (i $ A)

/* session i is about to become active /*

Di(-) =update_DC(z); /* update deadline curve */

Ej(-) =update_EC(i); /* update eligible curve */

Ci = Ci + length(p);

d = £8
_1(ci); /* update eligible time */

di = £>~1(c,- + length(nex£_p)); /* update deadline */

(a)

update_d(z,p, nextjp)

di = Bjx{ci — length(p) + length(next_p));

G>)
Figure 6: (a) The function which updates the deadline and the eligible curves, and computes

the deadlines and the eligible times for each session. Note that the eligible and the deadline

curves are updated only when the session becomes active, (b) The function which updates

the virtual deadline, when the session is served by the link share criteria. This is because

the new packet at the head of the queue may have a different length.

53

update_v(z,p)

n = parent(?);

if (i $. A) /* is class/session i active ? */

Vi = max(vi,v^)

update_VC(»;

if (active(i) = TRUE)

return;

else

W{ = wi + length(p);

Vi = Vr1(wi);

if (n ^ äOOT)

update_v(n,p);

Figure 7: TAe function which updates the virtual time curves and the virtual times in

H-FSC.

1 .a J |
mf=r^ - Sj

to

mf=y /Si

„,1 A

1

max
% -

m± = 0 y / i

1
.max

"i=di
t

xi
.niax

di

—^-
t

(a) (b)

Figure 8: 7%e service curve associated with a session i characterized by maximum delay

d?ax, maximum unit of work u™ax, and average rate r,-. If u^ax/d^ax > n, the service

curve is concave (a); otherwise, it is convex (b).

54

update_DC(z)

if ((mj > mj) and (c,- + t/f - yt > m? x (ta + af - x,-)))

/* D{(-) concave and intersects Si(- — ta) + c,- */

a = yi — mfxi; /* compute intersection point */

Jyj {d - m\ x (xf + ta) - a)l{m2
i m;

,?^. yt = m\Xi + a;

else

2/i = Q + ys
s;

Figure 9: The function which updates the deadline curve D{. (Service curve parameters are

identified by superscript S.)

45 Mbps

I Link :

64 Kbps 2 Mbps 5 Mbps 8 Mbps 4Mps

20 Mbps ; A i I Poisson ; ! Poisson ; \ Poisson ; [Poisson ■

■ x\ 5 Mbps 5 Mbps 5 Mbps 5 Mbps 5 Mbps

'. Audio : (Video ! ', FTP j > <**. i I Poisson ■

Figure 10: Class Hierarchy.

55

(a) H-WF2Q+

'sJilJi&^h«

(b) H-FSC

(c) H-WF2Q+ (d) H-FSC

Figure 11: Absolute delay for audio and video sessions.

56

80 Kbps
480 Kbps

1.44 Mbps
3000 2 Mbps -

*-
2500 • '' *v ;

< (K
bp

s)

■ \ r\ A AAA /

1
4
§ 150° '; "
m

1000
A/"~\ /"\ j'_ A/V~_A

-

500
J

A
; S

"
V

s. >v L/ \/
// J

0 500 1000 1500 2000 2500
Time (ms)

Figure 12: , Be indwidt) ? distribut 'on among /owr competing sessions.

enqueue -*—
dequeue (real-time! ~t—

dequeue (link-sharing) -□■-
overhead per forwarded packet ■-*-

enqueue -e-
dequeue (real-time) -+-

dequeue (link-sharing) -□■
overhead per forwarded packet -x— -

Number of levels

(a) (b)

Figure 13: (a) The overheads for aflat hierarchy with 1, 100, ■■■, and 1000 sessions, (b)

The overheads for a one-level, two-level, and three-level hierarchies, with each hierarchy

having 1000 sessions.

57

time time time

time time time

(b)

Figure 14: The envelope (fmax{-)) and the burstiness (Bf(-)) functions associated to (a)

a two-piece non-decreasing concave, and (b) a two-piece non-decreasing convex function,

respectively.

58

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required
not to discriminate in admission, employment, or administration of its programs or activities
on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil
Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section 504 of the
Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or
administration of its programs on the basis of religion, creed, ancestry, belief, age, veteran
status, sexual orientation or in violation of federal, state, or local laws or executive orders.
However, in the judgment of the Carnegie Mellon Human Relations Commission, the Depart-
ment of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Neverthe-
less, all ROTC classes at Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone (412) 268-
6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, telephone (412) 268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

